

Industry 4.0 in Mining

Johan Hedlin

Short about Johan Hedlin

- □ Background as R&D manager in the Swedish telecom and IT business
- □ Since 1999 been working for the Mining industry as management consultant and project manager.
- Since 2010 CEO for the R&D company Rock tech Centre (RTC)
 - RTC AB is a limited company owned by the <u>Bergforsk Foundation</u>, Epiroc, NCC and ABB, while the Bergforsk Foundation is owned by Boliden Mineral, LKAB, Zinkgruvan and <u>Luleå University of Technology</u>.
 - RTC has been establishing consortium and and running a number of joint technical R&D projects with partners from Swedish, Europe, Australia and Canada companies and Universities.
- Since 2016 founder and owner of HeadMining AB(Ltd) company.
 - HeadMining is a management consultant company specialised on analysing and development of strategies for improving mining operations in a sustainable way. The company consist of some of the best expertise people from Swedish mining industry and University.

HeadMining

Agenda

- 1: The road to Industry 4.0
- 2: Four main principles of Industry 4.0
- 3: Towards Industry 4.0 in Mining
- 4: Some examples of technology
- 5: Steps on the road
- **6: Current examples from Swedish mines**
- 7: Key enablers
- 8: A brief summary

The road to Industry 4.0

1st industrial revolution: from farming to factory production (19th Century.)

2nd industrial revolution: steel, electrification of factories, the first attempts of mass production (1850s to World War I)

3rd industrial revolution: the change from analogue, mechanical, and electronic technology to digital technology (late 1950s to the 1980s)

4th: the move towards digitization

- communications infrastructure
- Internet of Things and cyber-physical systems such as sensors
- big data and powerful data analytics means

Navigating the next industrial revolution			COMMITTED TO IMPROVING THE STATE OF THE WORLD
Revolution	Year	Information	

1870

3

Division of labour, electricity, mass production

1784 Steam, water, mechanical production equipment

1969

Electronics, IT, automated production

Cyber-physical systems

4 main principles of Industry 4.0

Interoperability

Information transparency

Technical assistance

Decentralized decisions

- 1) Mechanization using hydraulic drills, and steam powered engines
- 2) Mass production and assembly lines along with electricity, giving miners access to more and better equipment with the aid of electricity
- **3) Computers and automation**, giving way to various mining robots to perform dangerous and heavy tasks
- 4) Industry 4.0!

Mining 4. 0 – examples

- High speed communication networks
- Tele-remote, assisted control, and fully autonomous equipment robotics and sensor technology
- Integrating geological & other information into a single database
- UAVs or underground vehicles with laser scanning technologies
- Real-time data & process control
- Centralised automated operations
- Change in how workers interact (with each other and with machines)

...etc etc

- →increased safety
- →increased productivity
- → production according to plan
- → decreased energy consumption
- →lower costs

Manned operations

Assisted Operations
Remote controlled operations
Tele-Remote Controlled operations
Semi-autonomous and fully autonomous
mining operations
Mining 4.0

Manned operations
Assisted Operations
Remote controlled operations
Tele-Remote Controlled operations
Semi-autonomous and fully autonomous
mining operations

Manned operations
Assisted Operations

Remote controlled operations

Tele-Remote Controlled operations

Semi-autonomous and fully autonomous mining operations

Mining 4.0

Mining 4.0

Manned operations
Assisted Operations
Remote controlled operations
Tele-Remote Controlled operations
Semi-autonomous and fully autonomous
mining operations

Manned operations
Assisted Operations
Remote controlled operations

Tele-Remote Controlled operations
Semi-autonomous and fully autonomous
mining operations
Mining 4.0

Key enabler: high speed communication network

Mining 4.0 –current examples from Swedish mines

Boliden Kankberg mine (2017-2018)

- 5G enabled industrial communication network
- 5G connectivity for automation and robotics
- High-precision positioning and close range emergency data communication mesh network
- High-precision positioning of mobile equipment & personnel
- Semi-Autonomous UAVs (drones) for inspection activities

Mining 4.0 –current examples from Swedish mines

Boliden Renström mine (2017-2018)

- On-line process control
- On-line maintenance data from machines

Boliden Kristineberg mine

2011: Ventilation on demand (in several

Boliden mines)

20xx: mine wide WLAN

2017-2019: Automated Volvo truck (lorry)

Mining 4.0 –current examples from Swedish mines

LKAB Kiruna mine

1974 Automatic remote controlled underground train

1998: Semi-autonomous drill rig (Atlas

Copco Simba)

2000: Semi-autonomous LHDs (Sandvik)

2019: Robotized Charging Machine

(explosives) (ABB)

Key enablers

Communication platforms
-Wifi, 4G, 5G
Positioning systems
Sensors
Integrated process control systems
Sufficient personnel competence level

Safety and legal regulations needs to be developed

Adopting Mining 4.0

A step-wise implementation can give early benefits. Identified needed technologies and don't apply all new technologies at once.

- Understanding mine specific needs and possibilities
- Understanding processes & recognizing potential gains
- Establishing communication systems
- Organizing proper data management and analysis.
- Educating personnel

→technology, infrastructure, humans & organisation

IMPACTS and conditions:

It is expected to achieve positive impacts on productivity, safety and environmental.

To go in the direction will also have strong impacts on:

- Organisations of work
- Management, of operative levels
- Production processes
- Education level, for all kind of workers and management
- Investments
- and much more...

Thank You for Your attention

Johan Hedlin
Johan@headMining.com